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Abstract

Utilization of generalized linear mixed models (GLMM) in invasion biology has increased expo-

nentially during the last 5–10 years. GLMM are useful tools that can handle data with various

distributions as well as spatial or temporal dependence, which are involved in many study designs.

We review the current state-of-the-art of GLMM with special focus on applications in invasion

biology. This review covers all steps of data analysis with GLMM. We address frequently

encountered practical problems, such as failure of convergence, and put some emphasis on vali-

dation of model assumptions. Further, we point towards possibilities of analysing zero-heavy data

using combined GLMM. More detailed insight into practical applications of GLMM is provided in

three worked examples in the supplementary material. Regarding applications of GLMM in invasion

biology, a literature analysis showed that random effects are mostly used to account for non-

independence of observations through study design, but rarely for estimation of random variation.

There may be some potential in using random-effect estimation more consciously, as in some

recent studies of genetic variation of invasive species. Often, invasion biologists have to deal with

count data or proportions. In such cases, several methods of parameter estimation are available,

but their suitability depends on characteristics of the data at hand and, hence, they should be

chosen carefully. Also, repeated measures are common in invasion biology. In GLMM frameworks,

the auto-correlation of such data can be modelled by structured co-variance matrices. This

opportunity, however, has seldom been used.
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Review methodology

For the review of studies that applied GLMM in invasion

biology, we searched Web of Science, Scopus and Google

Scholar for articles published between 2002 and 2011

(effective from July 12). We found 116 articles of which 50

were selected for analysis by assigning random numbers

and sorting in ascending order. Details of the literature

analysis are given in Supplement A.

Introduction and scope

Invasion biologists often study data that are not suitable

for analysis with classical statistical procedures such as

ordinary least squares (OLS) regression and analysis of

variance (ANOVA), which require normal distribution,

homogeneity of variance and independence of residuals. In

many cases, the variables used to assess biological

phenomena are not normally distributed. Count data as

well as binomial data are daily fare for invasion biologists

(cf. Supplement A). Further, study designs that implicate

non-independence of the observations through nested

sampling, spatial dependence, (phylo-) genetic relatedness

or repeated measures are common. Generalized linear

mixed models (GLMM) are flexible tools for analysing

such data.

The fundamentals of GLMM were established in the

1980s and the first software implementations occurred in

the early 1990s [1], but only since 2000 they have become
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widely available in statistical packages such as R (lme4

package first uploaded in 2003), SAS (PROC GLIMMIX

became standard procedure in V9.2, 2008; first produc-

tion version released in 2005), and ADMB (example of

Poisson GLMM dated December 2006). Consequently,

applications of GLMM in invasion biology have increased

exponentially during the last few years (Figure 1). The

development of philosophies, sophisticated statistical

procedures, and software implementations of GLMM is

still continuing, but the basics are sufficiently mature for

wide application in invasion biology. We will, however,

not conceal the fact that applying GLMM can be some-

what more complicated than classical linear modelling.

There are different methods for estimating parameters

and for testing significance and their suitability depends on

the properties of the dataset. Further, it happens quite

often that models do not converge, particularly when

there are many fixed and random effects.

In this review, we will try to elucidate applications of

GLMM in the wide field of invasion biology, including not

only spread, but also ecology of non-native species and

impacts on native ecosystems. We will focus on mixed

models, i.e. those including random effects, although some

aspects, such as choosing suitable distributions or model

building are largely the same for generalized linear models

(GLM) without random effects.

The scope of this review is, first, to detect the most

common issues that invasion biologist deal with when

applying GLMM, and to identify common problems and

possibly unused potentials, through analysing recent

research articles. The results of this literature analysis are

reported in Supplement A, if not in the main text. Sec-

ondly, we review the methodology of GLMM. We intend

this review to serve as a guide to GLMM for invasion

biologists. Hence, we will address all common issues of

GLMM, if only briefly at times, by revisiting the steps of

data analysis. Some emphasis is put on modelling zero-

heavy data and validation of model assumptions. Thirdly,

we give worked examples of data analyses with GLMM in

Supplements B–D that may help to clarify some details of

model setups and interpretation of results.

What are GLMM?

GLMM are regression models that allow choosing among

various distributions and link functions, just like GLM, in

order to model a wide range of types of dependent

variables through linear combinations of one or multiple

predictor variables (fixed effects). Additionally, GLMM

include random effects.

Random effects quantify the variation of regression

intercept or slopes among the levels of a grouping variable

by a probability distribution instead of estimating a fixed

regression coefficient for each level. In GLMM this dis-

tribution is assumed to be Gaussian with zero mean and

some variance to be estimated. Even though a random

effect is described by a distribution, the values of its levels

still may be estimated by maximum a posteriori estima-

tion. In Linear mixed effects models (LMM), i.e. GLMM
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Figure 1 White bars show the number of peer-reviewed papers reporting applications of GLMM in invasion biology (GLMM
papers) published from 2002 to 2011 according to the literature search documented in Supplement A. The figure for 2011
was linearly extrapolated from data covering 1 January to 12 July. In total, 116 GLMM papers were found in the literature
searches. Black bars show the number of all papers found in Web of Science using the query ‘invasi* OR “non-native$” OR
“non-indigenous” OR exotic$ OR alien$ OR weed*’ and refining the results by subject areas as specified in Supplement A,
ch. 1.1. The figure for 2011 was linearly extrapolated from data covering 1 January to 12 December 2011. Note that the
number of all papers is given in thousands. The increase of the number of papers per year was modelled with GLM (quasi-
Poisson, log-link).
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with Gaussian response and identity link, this gives the

best linear unbiased prediction (BLUP).

A grouping variable should be used as a random effect,

if its levels may be conceived to be a random sample from

a larger group [1], e.g. some individuals drawn from a

population, and if the variation among levels is more

interesting than the effect of a single level. Often the levels

of grouping variables are biologically meaningless, e.g. in

the case of experimental blocks, but need to be taken into

account in order to obtain valid P-values and estimates.

Such ‘nuisance variables’ should be used as random effects

when their variation is of interest. In all other cases

variables should generally be used as fixed effects [2].

Thus, it would be all right to use grouping or nuisance

variables as fixed effects, but particularly with many levels,

random effects have the practical advantage of using less

degrees of freedom.

For auto-correlated data, such as repeated measures of

the same individuals or spatially auto-correlated obser-

vations, it is sometimes sufficient to model the depen-

dence by suitable random effects. However, the strength

of correlation may depend on co-variates or co-factors,

e.g. temporal or spatial distance. For instance, observa-

tions made at time point 1 (t1) and t2 may be more similar

than at t1 and t3. GLMM can model complex temporal

and spatial correlation structures [3, 4]. Finally, also data

where the random effects have heterogeneous variance

can be analysed with GLMM.

Choosing distribution and link function

The first step of the modelling process is to find a suitable

distribution and link function for the data at hand. The

natural distributions of count data are Poisson or, in case

the variance is larger than the mean (overdispersion), the

negative binomial distribution. Proportions and binary

outcomes are naturally binomial variables. Depending on

the software package, also other distributions may be

available (Table 1).

The purpose of the link function is to transform values

of the dependent variable so that they match the scale of

the linear predictor, i.e. [71, 1], and to linearize the

relationship with the predictor variables (Table 2). For

each distribution, there is a canonical (‘natural’) link func-

tion, but there are also less commonly used alternatives

that may suit the data better in some cases. For instance,

binomial data may be modelled with probit link, or count

data with large means may in some instances be modelled

with identity link (Table 1). It is advisable to fit models

with different links to the dataset and to use the link that

yields the best model fit and parameter interpretation.

Models for zero-heavy data

Non-negative observations with exceedingly many zeros

are an often-occurring data situation that cannot be

modelled by the probability distributions listed in Table 1.

Lambert [5] introduced a zero-inflated Poisson model

(ZIP) for zero-heavy count data by increasing the prob-

ability of zeros in a Poisson distribution. If there is addi-

tional overdispersion beside the inflated probability for

zero counts, then a possibility is to use the zero-inflated

negative binomial model (ZINB; [6]). An alternative

description of the ZIP and the ZINB is to combine a

separate model for the zeros with the conditional model

Table 1 Some distributions used in GLM and GLMM, link functions and corresponding types of variables

Distribution Range of variables Common link functions
Scale
parameter Biological variables

Gaussian Real axis Identity Yes Metric
Transformed
to Gaussian

Positive real axis Log1 Yes Metric on logarithmic scale

Transformed
to Gaussian

Positive real axis Box–Cox1 Yes Metric

Beta Reals strictly
between 0 and 1

Logit, probit,
complementary log–log2

Yes Proportion

Gamma Positive real axis Log, power Yes Rates
Poisson3 0, 1, 2, . . . Log, identity No Counts: e.g. abundances,

species numbers
Negative binomial 0, 1, 2, . . . Log, identity Yes Counts with overdispersion
Binomial3 0, 1, . . ., N where N

is an a priori given
number of trials

Logit, probit,
complementary log–log

No Binary: e.g. presence–absence;
proportions: e.g. germination
percentage

Polytomous3 1, 2, . . ., K Cumulative logit,
ordered probit

No Ordinal scale

1Transformation is applied on the data points prior to a statistical analysis using the identity link. Although the transformation is not used as
a link function, the interpretation will be the same as for the link function.
2Inverse CDF for the log-Weibull distribution.
3A scale parameter may be introduced via the quasi-likelihood approach.
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for the non-zero counts, i.e. the truncated Poisson or

negative binomial distribution. These parameterizations

are known as hurdle models [7]. The interpretation is that

there is a hurdle to be surpassed to have non-zero

response. Zero-inflated and hurdle models describe the

same probability distributions, so the choice between

these two model classes depends on the interpretation of

the model parameters. This choice may be made con-

sidering the origin for the additional zeros [8]. Algor-

ithmically, hurdle models may be analysed using a bivariate

model with a binary response quantifying whether the

observation is zero or positive, and an additional counting

response with the actual count for the positive observa-

tions. For continuous responses we may also interpret the

hurdle as censoring, i.e. negative responses are censored

to zero and positive responses are observed as they

are. This model introduced by Tobin [9] is known as Tobit

regression and consists of a binary component with a

probit link quantifying whether the observations are

negative or positive, and a conditional normal distribution

with the identity link for the positive responses. A special

feature of Tobit regression in comparison with the ZIP

and the ZINB is that the parameters in the binary and the

conditional components are shared since the definition of

the probit function fits together with the censoring

interpretation. In Table 3, we have collected examples of

bivariate models that may be used to model zero-heavy

data. The last model is used in the worked example in

Supplement C.

Estimation methods

Before actually calculating the model we need to consider

which estimation method we can use. The choice depends

on the dependent variable and on the random effects that

are to be included in the model (cf. [10]).

If the dependent variable can be modelled with a nor-

mal distribution, we will conduct an LMM using restricted

maximum likelihood (REML) for parameter estimation.

For non-normal GLMM, exact integration over the ran-

dom effects is only possible in special cases, and the

practitioner is faced with the choice among a wealth of

approximate methods that may give different results.

Here we only discuss the most popular methods that are

implemented in SAS and R.

Penalized quasi-likelihood (PQL) [11] is widely used

since it is computationally fast. However, PQL estimates

are known to be biased and should be avoided for Poisson

variables when the mean counts within groups are less

than 5 and for binomial variables when the mean numbers

of either successes or failures are less than 5. Further,

GLMM can be approximated by LMM using pseudo-data

[12]. This method is known as pseudo-likelihood and

is the default method in PROC GLIMMIX. Neither PQL

nor pseudo-likelihood provides an approximation to the

actual likelihood of the data, and hence these methods

cannot be used to compare models by either likelihood

ratio (LR) tests or by information criteria. The standard

methods to attain such an approximation listed in

increasing order of accuracy, but also computational

costs, are the Laplace approximation, Gauss–Hermite

quadrature (GHC) and Monte Carlo integration [13]. In

practice, GHC is too slow when the number of random

effects is larger than three. Monte Carlo integration is

closely related to the Markov chain Monte Carlo (MCMC)

techniques extensively used in Bayesian statistics, and

many variants exist allowing for the analysis of very

complicated models. This, however, is outside the scope

of this review.

Table 2 Some link functions used in GLM and GLMM and their interpretations

Range of variable Link function name
Link function
formula

Common interpretation
of predictions

Common interpretation
of contrasts1

Real axis Identity m Position Difference
Positive real axis Log log(m) Position Log ratio

Log rate
Positive real axis Box–Cox (ml71)/(l*gl)2,3 Position Not available
Positive real axis Power ml Position Not available
Reals strictly
between 0 and 1

Logit log(m/(17m)) Log odds Log odds ratio

Reals strictly
between 0 and 1

Probit F71(m) Gaussian distribution
of change point

Difference in susceptibility

Probability vector Cumulative logit log(p/(17p))4 Log odds Log odds ratio, independent
of cut-off point

Probability vector Ordered probit
(cumulative probit)

F71(p)4 Vector of change points Difference in susceptibility

1Regression coefficients of the levels (dummy variables) of categorical predictor variables. Also applicable to one-unit changes in con-
tinuous predictor variables.
2The exponent l is a constant that is estimated from the data so that the data are as close as possible to normal distribution and
homogeneity of variance on the transformed scale.
3Here, g is the geometric mean of the data.
4Here p is the cumulative probability.
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Convergence problems

With many fixed predictor variables compared to sample

size, and with more than one random grouping variable,

GLMM computation algorithms may fail to converge. This

is a common problem in biological applications (see also

worked examples in Supplements B–D).

Among several recommendations, Cheng et al. [14]

advice that centring, standardising and full-rank coding

of the predictor variables and reduction of collinearity, if

present, is done in order to alleviate convergence pro-

blems. In non-complete designs, full-rank coding means

that treatment combinations not used should be removed

from the design matrix (cf. Supplement C). Further, with

caution, one may try out if manipulations of the data table,

such as aggregation of levels of categorical predictor vari-

ables, facilitate convergence. One might also try to change

the settings for the algorithm, e.g. to increase the number

of scoring steps and/or the maximum number of itera-

tions, and to loosen the convergence criteria. If these

measures are not successful, the reason for failing con-

vergence is most likely a (too) complicated random-

effects structure [14], and a solution could be to simplify

the random and/or fixed effects model.

Analysis strategies

In the literature analysis (Supplement A), a gross classifi-

cation indicates that the primary modelling aim was infer-

ence in 66% of the analyses and prediction/forecasting in

29%, while estimation of random variation accounted for

the remaining 5%. The purpose of inference is to provide

significance tests of relationships between dependent and

predictor variables, i.e. to state P-values answering the

question: Is there an effect? Thereafter, parameter esti-

mates and confidence intervals are stated as answers to

the follow-up question: What is the effect? Further, one

often calculates local group means and their confidence

intervals to assess the impact of the predictor variables on

the dependent variable. In prediction, the present dataset

is used for calculating the expected (‘predicted’) mean

values, whereas in forecasting a new data set of the same

predictor variables is used. We speak of projection, if the

new dataset represents a hypothetical scenario rather

than measured data. For prediction, forecasting and pro-

jection, we may ask: Which model is best? In all cases,

model validation should be done answering the question:

Can the conclusions be trusted?

Is there an effect?

Computation of P-values for the significance of fixed

effects in a GLMM is often done by either Wald or LR

tests.

Wald tests compare parameter estimates against their

standard error like t-tests in classical regression analysis

for the null hypothesis that a regression coefficient equals

zero. In the case of distributions with fixed dispersion, e.g.

Poisson and binomial, we can use Wald c2 tests, while in

the case of distributions where the dispersion or variance

is estimated, e.g. normal, quasi-Poisson or quasi-binomial,

we need to use Wald F tests that require the denominator

degrees of freedom (df). Several methods for estimating

df in GLMM have been proposed (e.g. [15, 16]; cf. also

[10]), but these do not always give reliable P-values.

In particular, caution should be exercised when the

standard errors are large. Large standard errors also may

result in inflated P-values in cases with less identifiable

parameters. The phenomenon e.g. occurs in quasi-

separated binary data, where a regression parameter

simply should be large. However, the parameter will be

estimated at some value, which can be outweighed by the

standard error.

LR tests compare nested models, with and without the

effect to be tested, and test the null hypothesis of no

difference in residual deviance. As Wald tests, there are

different variants of LR tests for distributions, where the

variation of the data needs to be estimated (! LR F test)

and distributions with a priori defined variation (! LR c2

test). When conducting LR tests of fixed effects in LMM, it

is recommended to use maximum likelihood (ML) for

estimating parameters [10, 14, 17, 18]. It is also possible

to use REML, but then the restricted likelihood should be

defined using the design under the reduced model [19].

This method, however, is not implemented in the stan-

dard software.

Regarding random effects, significance can be tested

with LR tests comparing nested models, which differ by

Table 3 Examples of bivariate models for zero-heavy data

Two-component
model Range of variable

Bivariate recoding
of response y Model components

Zero-inflated 0,1,2, . . . (a) 0 if y=0 (a) Binary
(b) (1,y) if y>0 (b) Binary, Poisson (or negative binomial) truncated in 0

Tobit Zero and positive
real axis

(a) 0 if y=0 (a) Binary with probit link
(b) (1,yl) if y>0 (b) Binary with probit link, Gaussian with identity link

Conditional
log Gaussian

Zero and positive
real axis

(a) 0 if y=0 (a) Binary with log link
(b) (1,log(y)) if y>0 (b) Binary with log link, Gaussian with identity link
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one random intercept or slope [20]. This tests the

hypothesis that a variance component equals zero against

the alternative that it is positive. Hence, the hypothesis lies

on the boundary for the possible values of the variance

component, and the LR test should be evaluated in a

mixture of a point distribution in zero and the

c2 distribution [10, 21, 22]. For random effects in LMM,

it is recommended that REML is used to define the LR

statistic [20].

In addition, a single random effect can be tested with LR

comparing the model including the random effect with a

model that does not include it (which is an LM or GLM),

but many GLMM software packages do not offer this

option. It is possible to fit the model without the random

effect in another program and, then, to conduct the

LR test, but it is important to make sure that the log-

likelihoods are commensurate in both programs (http://

glmm.wikidot.com/random-effects-testing). Alternatively,

the random effect can be tested with parametric boot-

strap (see Supplement B). Although the parametric

bootstrap does not account for the variability of the

parameter estimates, it is often more trustworthy than

the LR test since it does not rely on the asymptotical

distribution of the test statistic.

What is the effect?

Once we have tested the significance of effects, we might

want to know how strong the effects are. How much does

the dependent variable change given a unit change in a

predictor variable? We need to take into account that we

did not model the dependent variable itself, but its

transformation by the link function (Table 2). Hence, if we

want to know the effects on the original scale, we need to

back-transform the predictions, e.g. if we conducted a

Poisson-GLMM with log link, we have to exponentiate the

estimates of fixed predictor variables (for an example of

logistic modelling see Supplement B).

The interpretation of the estimates may depend on

whether random effects are included or not. Suppose, for

instance, that we have two observations from each subject,

where the subjects are representatives from some popu-

lation, and that we estimate some fixed effect. In the model

with random intercepts, the fixed effect will then be sub-

ject-specific. In the model without random intercepts, the

fixed effect will be averaged over the population.

As with all statistics calculated from a sample, model

predictions are not the true value of the population, but

estimates that include uncertainty. The range in which the

true value of the effect is likely to be found is given by

confidence intervals that are routinely provided by most

GLMM standard software.

Only a few studies in invasion biology aim at estimating

the effect of random variables on the dependent vari-

able (see Supplement A). But the random variation

among subjects or groups may be interesting as well [1].

A random intercept effect measures how much the

group-specific intercepts vary around the global intercept,

and the strength of the random effect may be assessed

comparing its estimated standard deviation to the size of

the fixed effect, i.e. the global intercept, in this case. For

instance, if the global intercept was 10 and the estimated

standard deviation of the random intercept was 2.5, then

approximately 95% of group – specific intercepts would

be in the range of 10+2*2.5, i.e. between 5 and 15.

If there was a fixed slope estimate of 2 and the standard

deviation of the random slope effect was 0.5, then

we would have to expect group-specific slopes within

the range of approximately 1 and 3. A worked example

of how to interpret random effects is given in Douglas

Bates new book on ‘mixed effects modelling in R’ ([23],

lme4.r-forge.r-project.org/book/front.pdf).

Which model is best?

According to our literature analysis, 34% of GLMM

applications in invasion biology conducted model building

before final parameter estimation and inference. In our

view, this is particularly appropriate whenever the pur-

pose of the study is prediction, forecasting or projection.

Full models give unbiased estimates, but may not be good

for prediction because they may contain insignificant

predictors [24] or, more generally, be over-fit [25]. For

inference, model selection is only advisable, if the number

of predictor variables is large. Otherwise, the full model

containing all available predictor variables should be used.

Generally, we would tend to keep biologically meaningful

variables in the model, even if they are not significant

(cf. [14]).

Strategies for model building are forward selection,

backward elimination and best subset [10, 14]. The step-

wise procedures have been repeatedly criticized because

the order of parameter entry or deletion can influence

the selection result, multiple tests involved in the pro-

cedures inflate type I errors, and parameter estimates

may be biased [24, 26]. For inference, we recommend that

model building is done by backward model selection.

Forward model selection should only be used, if there are

too many predictors. For prediction and forecasting, we

recommend best subset modelling and possibly model

averaging (cf. e.g. [27]). In any case, the candidate models

must have the same random-effects structure when

selecting fixed effects, and vice versa if selecting random

effects (e.g. [14]).

With GLMM, best subset modelling may easily become

computationally expensive, when there are several fixed

or random effects. Hence, it will often be necessary to

decide on a sensible maximum model, i.e. a subset of all

possible fixed and random effects and interactions that

can be calculated in reasonable time (cf. [10, 14]).

In best subset modelling, Information Criteria (IC) are

used for evaluating candidate models. IC consider both

http://www.cabi.org/cabreviews
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model fit (deviance) and complexity (df of the model

parameters), and they also can compare non-nested

models (contrary to stepwise procedures). Aikaike’s

Information Criterion (AIC) is the most widely used IC in

invasion biology and ecology. For small sample sizes, it is

recommended to use corrected AIC (AICc) which

penalizes more strongly for model complexity [26]. For

overdispersed data, quasi-AIC (QAIC) can be used,

although this has been criticized (cf. [10]). Bayes Infor-

mation Criterion (BIC) is very similar to AIC, but used

less commonly. BIC tends to favour less complex models

compared to AIC [28]. Both AIC and BIC require esti-

mating the df of the parameters in the model, which is

problematic with random effects [29]. The choice of IC is

largely subjective as no variant is consistently superior to

the others [14]. An alternative is the Deviance Informa-

tion Criterion (DIC), which is calculated using MCMC

sampling and takes the effective number of model para-

meters into account [30, 31]. DIC has recently gained

popularity in ecology [10].

The aim of model building is often to find one ‘best

model’ that is used for parameter estimation and infer-

ence. However, several different models may fit the data

similarly well, so that model selection may be uncertain.

Stepwise procedures and selection of a single best model

do not account for such uncertainty [24]. With IC and

best subset modelling it is possible to identify similarly

good models that are within a certain range of IC values,

e.g. DAIC< 4, and then, to average parameter estimates

among them using Akaike’s weights. Multimodel averaging

has increasingly been advocated and applied in ecological

studies [10, 27, 32] and is recommendable particularly for

prediction and forecasting [24].

Model building of random effects appears to be of less

importance in invasion biology, because most studies use

single random intercepts or random-effects structures

that are predetermined by study design (cf. Supplement

A). In principle, however, model building is as sensible for

random effects as for fixed effects and can be conducted

in a similar way. If model building of random effects is

desired, this should be done before selection of fixed

effects, i.e. using the full or maximum model, because the

results of fixed-effects model building may depend on the

random-effects structure [14, 18].

Can the conclusions be trusted?

GLMM rely on assumptions that need to be met in order

to get valid estimates and P-values. In case of backward

model selection these should be validated for the initial

and the final model, and in case of best-subset selection

validation should be done for the selected model. The

assumptions of GLMM are:

(a) A response distribution.

(b) A link function.

(c) Linearity against the predictors on the scale of the

link function.

(d) Gaussian distribution of the random effects.

Before describing possibilities to validate GLMM, we first

discuss the special methods that are available for the

validation of LMM. In Gaussian models, the specification of

the link function is replaced by transformations of the

actual observations of the response variable, if necessary,

and hence the link is the identity function. The standard

validation methods for Gaussian models investigate the

statistical properties of the residuals and of the predicted

random effects. Basically, there exist two sets of residuals

for LMM. The (unconditional) residuals are the differences

between the observations and the estimated fixed effects,

while for the conditional residuals the predicted random

effects, e.g. the random intercepts and effects of slopes of

the group levels, also are subtracted. The residuals, the

conditional residuals, and the predicted random effects

are all assumed to be Gaussian, and the conditional resi-

duals are approximately independent. As a consequence

of this, the model assumptions of LMM may be assessed

by the following graphical diagnostics:

I. The Gaussian distribution is validated by a normal

quantile plot of the conditional residuals. Variance

homogeneity is validated by a scatter plot of the

conditional residuals against the predicted values.

Independence of the error terms may be validated by

an autocorrelation plot of the conditional residuals.

II. The appropriateness of the identity link is assessed

with scatter plot of the residuals and of the condi-

tional residuals against the predicted values.

III. Linearity against the predictors is assessed with scatter

plots of the residuals and of the conditional residuals

against the individual covariates.

IV. The Gaussian distribution of random effects is vali-

dated by a normal quantile plot of the estimated

random effects (BLUPs).

The normal quantile plots may be accompanied by

goodness-of-fit tests based on an adequate statistic, e.g.

the Shapiro–Wilks, Kolmogorov–Smirnov, Cramer–von-

Mises or the Anderson–Darling statistic (see [33]). These

tests, however, may have too large power in the sense

that they may reject the normal distribution for non-

important deviations (see Supplement C). Furthermore,

not even the conditional residuals are strictly indepen-

dent, and hence the type I error of the tests may not be at

the significance level. Ritz [34] devised a goodness-of-fit

test for the distribution of the random effect taking the

dependence between the predictions of the random

effects into account, but to our knowledge this test is not

readily available in the standard software packages.

We are not aware of any standard methods for a

detailed assessment of the response distribution in

GLM(M). Instead, the choice of the distribution is often
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based on qualitative properties of the experimental

design, e.g. the Poisson and the negative binomial dis-

tributions are the natural choices for count data (Table 1).

However, Pearson or deviance goodness-of-fit tests for

overdispersion in distributions with fixed dispersion are

often performed. There have been several attempts to

define useful residuals in framework of GLM (see [35]).

But the distributional properties of such residuals are not

explicitly known. So the interpretation of classical residual

plots for GLM is difficult, and for GLMM things just get

worse. For graphical assessment of link function and lin-

earity, cumulative residuals and associated goodness-of-fit

tests have been proposed for GLM [36]. It is possible to

describe the asymptotic distribution of the cumulative

residuals using simulations, and the method extends to

GLMM invoking the generalized-estimating-equations

(GEE) approach [37]. Concerning the distribution of the

random effects, the goodness-of-fit test proposed by Ritz

[34] was extended to GLMM, but it has low power for the

logistic regression [38]. It is still possible to make a normal

quantile plot of the predicted random effects, but given

the unknown distributional properties of the predicted

random effects, there is no justification for alarm even for

less nice-looking plots. In summary, GLMM may be vali-

dated as follows:

(a) Make a histogram of the raw observations to see if the

chosen response distribution is completely ‘off’. For

distributions with fixed dispersion perform a Pearson

or deviance goodness-of-fit test.

(b) To assess the appropriateness of the link function,

plot the cumulative residuals against the linear pre-

dictor, possibly accompanied by a goodness-of-fit test.

(c) To assess linearity against the predictor variables, plot

the cumulative residuals against the individual con-

tinuous predictors, possibly accompanied by a good-

ness-of-fit test.

(d) Make a normal quantile plot of the predicted random

effects. This plot, however, may only be used to find

comfort and cannot be used to invalidate the dis-

tributional assumption.

The cumulative residuals may be done in PROC GENMOD

in SAS, which also provides the Kolmogorov-Smirnov

goodness-of-fit test and allows for correlation via the GEE-

approach (see Supplement C). In R, cumulative residuals

and the associated Kolmogorov–Smirnov and Cramer–

von-Mises tests may be done via the gof-package [39]. This

package, however, does not include the GEE-approach and

hence only works for GLM. To use the R-package on

GLMM, the random effects should either be removed or

reused as fixed effects in the validation step (Supplement B).

How to report the model?

In the literature analysis, we found that many papers did

not report crucial aspects of GLMM. For instance, 62% did

not report the method of parameter estimation (PQL,

Laplace etc.). Not a single paper reported all of the

information necessary for evaluation of the methods.

We suggest that the following list of information should

be routinely provided in papers (modified after [10], their

supplementary material): study design, sample size, num-

ber of levels of random grouping variables, software

package, type of dependent variable, distribution, over-/

underdispersion (for Poisson data and proportions

modelled with binomial distribution), link function,

method of parameter estimation, test methods of fixed

and random effects, estimation of df of the residuals

(when using Wald F tests) and of the random effects

(when using AIC or BIC or their variants), model selection

criteria and strategy; for Poisson data: mean and variance;

for proportions: minimum number of successes/failures,

results of model validation, magnitude of random effects.

Conclusion/Summary

GLMM are important tools in invasion biology, because

study designs often involve non-Gaussian dependent

variables and independence of observations due to spatial

or temporal grouping. Applications of GLMM have rapidly

increased after standard software had become available,

and they are likely to increase further in future. It is dif-

ficult to say, if invasion biologists manage GLMM all right

or if flawed applications are common, because most

papers do not report sufficient details. GLMM are as

flexible and powerful as they are complicated and chal-

lenging. Users should be aware of the different methods of

significance testing and of estimating parameters. PQL is

often not suitable for studies in invasion biology. Laplace

approximation is a good compromise between precision

and computational speed and will be suitable for most

studies. Currently, MCMC techniques are becoming more

commonly available. They may help to solve some of the

difficulties in inference and estimation [10].

Model validation is hardly ever reported, but of crucial

importance for valid inference and estimation. Perhaps,

users should pay more attention to validation of model

assumptions. Generally, we encourage reporting on

methods more rigorously, if not in the paper itself, then in

online supplements.

Structured co-variance matrices are good tools for

modelling temporally, spatially or phylogenetically corre-

lated data (cf. Supplement D). Repeated measures are

common in invasion biology (32% of reviewed GLMM

analyses), but so far most such studies have used un-

structured co-variance matrices, although explicit mod-

elling of temporal auto-correlation would give more

precise P-values. For some recent studies that modelled

auto-correlation of repeated measures see McEachern

[40], Chun et al. [41], Tognetti et al. [42]. An application of

GLMM to modelling spatial auto-correlation of grid-based

distribution data can be found in Gassó et al. [43]. One
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difficulty is that correlation structures currently are only

widely implemented for LMM, but rarely for GLMM. The

exception appears to be PROC GLIMMIX in SAS, GEE

[44] and many of the Bayesian approaches. In view of

the further rapid software development, the potential for

modelling correlated data may increase in future. Gen-

erally, we encourage using structured co-variance matri-

ces for modelling correlated data whenever possible.

Usually invasion biologists are not interested in testing

or interpreting the random effects. This is obviously

because of the fact that random variables most often are

nuisance variables. However, there may be some potential

in using random-effects modelling more consciously. For

instance, a species invasion potential may not only depend

on mean traits of the population, but also on genetic

variation at genotype or population level that can be

measured in GLMM as random effects (see e.g. [45–47]).
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